High Resolution Separations Using Longer Columns and Elevated Temperature

Brian A. Jones, Jody Clark, W. Dale Felix, Stephanie J. Marin

Selerity Technologies, Inc.
2484 W. Custer Road
Salt Lake City, UT 84104

www.selerity.com
High Resolution in HPLC

• Why is it desired
• How it can be accomplished
 – Long columns
 – Small particles
• Ability to move the mobile phase through the column is limiting
 – Raise pressure
 – Decrease viscosity
The column pressure drop ΔP depends on the mobile phase viscosity η, the mobile phase velocity u (flow rate), column length L and the square of the particle diameter of the packing material d_p:

$$\Delta P = 1000 \eta \cdot u \cdot L / d_p^2$$

$$u = \Delta P \cdot d_p^2 / 1000 \eta L$$

Increasing plate number in HPLC is thus primarily limited by pressure drop (both L increase and d_p decrease lead to increased pressure drop).
Temperature as a Powerful Tool in LC

- to increase productivity - speed
- for new unique selectivities
- for higher efficiencies (lower mobile phase viscosity)
- for improved peak symmetry
- for higher sensitivities (less band-broadening)
- to reduce organic solvent usage – “green chromatography”
Viscosity of Water vs. Temperature

Viscosity Reduction at Elevated Temperature Enables the Use of Long Columns

25 cm columns, 5µm particles; 80°C; flow rate 1.0 mL/min, 40%ACN. Peaks:
1. uracil; 2. caffeine; 3. pyridine; 4. phenol; 5. aniline; 6. benzene; 7. toluene

Narrow-Bore Columns

- Sensitivity
- Small samples
- Low mobile phase usage
- Detector compatibility
- Fast thermal program tracking
Historical Microbore Columns

- Generally used for normal phase separations only when at elevated temp or moderate pH with reversed-phase solvents
- Packed fused silica capillaries
- PEEK encapsulated or PEEK sealing components (limits temperature to ~100°C)
Silica Solubility in Water vs. pH

Silica Solubility in Water vs. Temperature

Silica Capillary Dissolution Rate

- More than just bulk solubility in the fluid
- Affected by fluid flow across the surface
- Water concentration and pH influence corrosivity
Comments on the Use of Fused Silica Tubing Based Packed Capillaries for Reversed-Phase Separations Under Aggressive Conditions:

“A silica saturator is used to minimize the dissolution of silica from the capillary wall (not the column, the packing is not silica-based) by the superhot water.”

“Overheating the pre-saturator can result in dissolved silica subsequently depositing in the injector.”

Bursting of fused silica capillaries occurred even with a silica saturator.

For long term studies, stainless steel capillaries were used...

Selerity SFC Columns
ASTM-5186 Column Performance

Columns: 1.0 x 500 mm, 5 μm, 60Å, Petrosil silica
CO₂ at 200 atm, 40°C; Detection: FID
Hexadecane, Toluene, Tetralin, Naphthalene

Rs=15
Rs=7.4
Keys to Improving Narrow-bore Column Performance

• Improvements in packing technology
• Improvements in producing long lengths of highly polished narrow bore stainless steel tubing
• Development of strong particles with traditional silica selectivity and stability in aqueous mobile phases over wide pH and temperature ranges
pHidelity™C_{18}/Blaze_{200}™ Surface
SFC Test of pHidelity™C\textsubscript{18} Column

Column: 1.0 x 500 mm, 5 μm, 200Å, pHidelity™C\textsubscript{18}; CO\textsubscript{2} at 200atm, 40°C; FID

pHidelity is a Trademark of Restek Corporation

Toluene
Hexadecane
Tetralin
Naphthalene
Selerity Polaratherm™ Series 9000
Total Temperature Controller

• Used in the LC portion of this study
• Forced air oven and chiller
• Isothermal and thermal gradient operation
 – Sub-zero to 200°C
 – Thermal gradients up to 30°C/min
• Mobile phase preheating and pre-cooling
• Peltier effluent temperature control
• Vapor sensor
• Compatible with any HPLC system
Resolution Test

Column: 1.0 x 500 mm, 5 µm, 200Å, pHidelity™ particles, 50°C
UV 254nm, 170nL cell; 60nL injection; Flow: 0.05 ml/min 50%ACN

Elution: uracil, phenol, benzene, naphthalene; Reduced plate height: ~4
Pressure Drop vs. Temperature

50%ACN 1x500mm pHidelity™/Blaze™ column 5um particles
High Speed Separation with a 1 x 500 mm Column

Column: 1.0 x 500 mm, 5 µm, 200Å, pHidelity™ particles, 150°C
Detection: UV 254 nm, 170nL cell, Flow: 0.4 ml/min 50%ACN
Elution: uracil, phenol, benzene, naphthalene
Sleep Aid Separation

Column: 1.0 x 500 mm, 5 μm, 200Å, pHidelity™C_{18} particles, 50°C; UV 254 nm
170nL cell, 60nL Injection; Flow: 0.1 ml/min 35%ACN, 0.2%TFA

Elution: doxylamine, Lunesta™, Ambien™, diphenhydramine, Sonata™
Analgesic Separation

Column: 1.0 x 500 mm, 5 μm, 200Å, pHidelityTM particles
Detection: UV 235 nm, Flow Rate: 0.1 ml/min
Mobile Phase: 35ACN:65 0.2% TFA
Temperature: 50°(4 min) 10°/min to 110°C

1. Acetaminophen
2. Caffeine
3. Salicylamide
4. Aspirin
5. Salicylic acid
6. Naproxen
Conclusions

• Polished stainless steel tubing is capable of producing narrow-bore columns in long lengths with good efficiency.
• Stable narrow-bore columns for reversed-phase chromatography can be used with wider pH and temperature ranges.
Turn up the Heat!

www.selerity.com

Partnering with Restek Corporation